The generator matrix

 1  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1 2X  1  1  1  1  X  1 3X  1 3X  1  1  1  1  1  1  1  1  1 2X 3X  1  1  1  1 3X  1  1  1  1  1  1  1  X  1 2X  1  X  1  1  1  1  1  1  1  1 2X  0  1 2X  1  1  1 2X  1  1  0  1  1  1  1  1  1  X  X  1  1  1  1  1  1  1  1  1 4X  X  X  1  0  1  1  1
 0  1  0  0  X 4X 3X 3X+1  2 3X+4 3X+1  1  1 3X+3 3X+2  2 2X+3  1 2X+1 2X+4 4X+4 X+3  1 4X+3  1 3X+3  1 X+2 4X+4 3X+2 3X+4 X+2 X+3 X+1 4X+2 X+2 2X  1 X+4 2X+4 2X 4X+1  1 X+1 3X+2 4X+2 3X+3 X+1 3X 4X+1  1 X+2  1 4X+3  1 X+3 X+4 2X 3X 2X+3 4X+1 2X+1  1  1  0 4X+4  1 2X+3 4X+3 3X+2  1  4 4X  1 X+3 3X+3  0 4X+4  3 2X+3  1  1  4  X X+3 4X 2X+2 2X+4 4X+3 2X+2 X+4  1 4X  1  1  1  3  0 4X+1
 0  0  1  1 3X+2  4  3 3X 2X  X 3X+3  4 X+1 3X+1 4X+1 4X+2 X+3 2X+4 3X+2 3X+1 4X+2 2X+2 2X+3 X+4 3X+2 4X X+1 X+3  3 X+4 4X+4 4X+3  2 2X+1  4 3X  1  1 4X+4  0 4X+3 4X+3 X+2  0 2X+2 2X+1 4X+1 3X  X 3X+4 2X+4 X+1 2X 2X+3  3 2X+1 3X+1 3X+4  0  X  2 2X X+4 2X+3  1 4X+2 2X+4 3X+3 4X+4 2X+3 X+3 X+1  1 4X+4 4X+3 2X+2 2X+2 3X+2 4X+4 2X  X 3X+1 3X+3  4 2X+2 2X+1 3X+4  3 3X+1 X+3 3X+4  2  1 X+1 2X+3 X+4  2 2X+2 3X
 0  0  0 3X 3X 3X 3X  0  0  0 3X 4X  X  X  X 2X 3X  0  X  0  0 3X  0  X  X 4X 4X  X 2X  0 4X 4X 4X  0  X 2X 3X 2X  0 4X  X 2X  0 3X 4X 3X 3X 4X 4X  X 3X 2X 4X 4X  X 4X 2X 2X 2X 3X  0 2X 2X 3X 4X 4X 4X  X 2X 3X 2X 3X 4X 3X  0  0 4X 3X 4X  0 3X  0  X  0  X  X 4X  0 3X 2X  X 2X 2X 3X 4X  X  0  X  X

generates a code of length 99 over Z5[X]/(X^2) who�s minimum homogenous weight is 379.

Homogenous weight enumerator: w(x)=1x^0+1920x^379+904x^380+7640x^384+2064x^385+11720x^389+3016x^390+11820x^394+2812x^395+11860x^399+2804x^400+9200x^404+2296x^405+6040x^409+1356x^410+2120x^414+340x^415+180x^419+8x^420+4x^425+4x^430+4x^435+8x^440+4x^445

The gray image is a linear code over GF(5) with n=495, k=7 and d=379.
This code was found by Heurico 1.16 in 17.3 seconds.